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Abstract

Bugs in software that make it through testing can cost tens of millions of dollars

each year, and in some cases can even result in the loss of human life. In order to

eliminate bugs, developers may use symbolic execution to search through possible

program states looking for anomalous states. Most of the computational effort to se-

arch through these states is spent solving path constraints in order to determine the

feasibility of entering each state. State merging can make this search more efficient

by combining program states, allowing multiple execution paths to be analyzed at the

same time. However, a merge with dissimilar path constraints dramatically increases

the time necessary to solve the path constraint. Currently, there are no distance mea-

sures for path constraints, and pairwise comparison of program states is not scalable.

A hashing method is presented that clusters constraints in such a way that similar

constraints are placed in the same cluster without requiring pairwise comparisons

between queries. When combined with other state-of-the-art state merging techni-

ques, the hashing method allows the symbolic executor to execute more instructions

per second and find more terminal execution states than the other techniques alone,

without decreasing the high path coverage achieved by merging many states together.
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A TREE LOCALITY-SENSITIVE HASH FOR SECURE SOFTWARE TESTING

I. Introduction

Advances in computational power and search algorithms have allowed for the

creation of tools that automatically test software by making a model of a program,

then using that model to find inputs that cause the program to enter an anomalous

state (such as accessing a null pointer or writing beyond the end of an array.) As

testing continues for greater periods of time, both the number of program states that

must be tracked and explored as well as the difficulty of analyzing each state increase,

so that testing can begin to “bog down.”

This dissertation presents the Tree Locality-Sensitive Hash (TLSH), a locality-

sensitive hashing algorithm that with high probability assigns the same hash value

to trees that are close to each other under tree edit distance. When applied to

the path constraints of symbolic execution states, TLSH identifies similar states for

merging to reduce the search space that must be analyzed, thereby increasing the

odds of finding a bug/increasing the certainty there there are no bugs remaining in

the program under test. TLSH assigns the same hash value to similar program states,

so that multiple states with the same hash value can be merged together and analyzed

simultaneously. Combining TLSH with Query Count Estimation (QCE) [36] yields

performance improvements in instructions executed per second and the number of

terminal execution states discovered.
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1.1 Introduction

We test software for many reasons, such as to check that it actually does what

we intended it to do, to see if users are able to successfully use the software in order

to accomplish their goal, to make sure that updates to the software do not introduce

errors, or to look for vulnerabilities that could allow a nefarious actor to use our

software against us. Ultimately, all testing is designed to find errors in software so

that they can be corrected [45]. Software errors have a real cost [43]: human lives

have been lost due to software bugs, and an estimated 60 billion dollars a year are

lost in the US economy every year due to software errors.

Software testing is an important and expensive part of the software development

lifecycle [45]. Testing occurs throughout the lifecyle of a piece of software, from

unit testing that tests individual modules to higher order testing of entire systems of

interrelated software. For each testing stage, test inputs must be generated. These

inputs may be created by the developers writing the code, individuals responsible for

testing the code, or even automatically by a testing framework.

Symbolic execution is a popular method to generate test inputs for complex pieces

of software [14]. Symbolic execution is a program analysis technique in which concrete

inputs in programs are replaced with models representing the possible values those

inputs may take on, so that the execution path of any possible input may be evaluated,

as opposed to a single execution path. A subset of program inputs are marked as

symbolic. As the program is symbolically executed, data that is dependent on a

that input is also recorded as symbolic. When a branching instruction depends on

a symbolic value, the feasibility of taking each branch is evaluated by querying a

Satisfiability Modulo Theories (SMT) Solver [49]. A symbolic program state is created

for each of the possible branches.

2



1.2 Problem Description

As symbolic execution continues, the number of states that are discovered (and

thus, the number of paths to be explored) grows exponentially in the number of

branches encountered; this is known as the Path Explosion Problem [33]. In general,

it is not possible to explore every possible execution path (the program may not halt

for every possible input). One method of mitigating the path explosion problem is to

use heuristics to select states for further exploration that are more promising, such as

states that have a higher probability of increasing code or branch coverage [12]. This

can result in high code coverage, but still “bogs down” when testing complex real-

world applications. Another method is to merge similar states [28, 36]. Merging states

can alleviate the path explosion problem by reducing repeated work, but selecting the

wrong states to merge can result in a decrease in code coverage due to an increase in

the difficulty of solving the path constraints of merged states [18]. These approaches

can be used concurrently by using heuristic exploration to select new states to execute

and merge as appropriate.

Finding the correct states to merge is not trivial [36, 18]. A naive approach to

selecting states to merge is to define a distance measure between the states and com-

pute the distance between each state, and finally merge states that are close together.

For the tests described in this document, the symbolic execution tool frequently had

hundreds of thousands of states that were awaiting exploration, which would result in

billions of comparisons required to make a merge decision. An alternative approach

is to hash the states in such a way that states that are similar hash to the same value.

This avoids the cost of the pairwise comparisons while separating the states into sets

that are appropriate for merging.

3



1.3 Methodological Approach

The novel hashing technique to compare path constraints involves representing

each path constraint as a graph, enumerating certain k-subgraphs of that graph, and

calculating the canonical form of each of those subgraphs. Min-hash [11] is then used

to calculate a hash of each path constraint based on the subgraphs present within

it. Since this hashing technique assigns with high probability the same hash value

to constraints that are close to each other under tree edit distance, we call it Tree

Locality-Sensitive Hash (TLSH).

To test TLSH, the GNU Coreutils [2] were symbolically executed. Two sets of

experiments were performed. In the first, the Coreutils were symbolically executed

with no state merging, and the queries sent to the solver were logged. These queries

were then used to evaluate the accuracy of the hash compared to tree edit distance. In

the second set of experiments, the Coreutils were symbolically executed using several

different state merging strategies, and the total number of instructions executed, the

number of execution states executed to completion, and the estimated number of

partial paths in the CFG were compared for each merging strategy.

1.4 Research Questions

Analysis of TSH must answer two questions: is it likely to assign the same hash

to a constraint and its nearest neighbor, and does it cluster path constraints in a way

that is useful for state merging?

To answer first question, five representative utilities were selected, and the tree

edit distance [52] between every constraint generated during the testing of a utility

computed. Over 99.3% of the constraints are assigned the same hash value as at least

one nearest neighbor.

To answer the second, the constraint hashing algorithm was implemented in Klee

4



[12], and the GNU Coreutils [2] were symbolically executed for an hour each using va-

rious state merging strategies. A merging strategy that combined TLSH with Query

Count Estimation (QCE) [36], a technique to minimize the number of calls to the sol-

ver, resulted in the most instructions per second executed, the most execution states

executed until they halted, and an equivalent number of feasible paths discovered by

Klee.

1.5 Summary

This document the Tree Locality-Sensitive Hash (TLSH), a locality-senstive hashing

method that assigns a hash value to the path constraints generated during symbolic

execution. This hashing method assigns the same value to path constraints that are

close to each other under tree edit distance. Constraints with the same hash value

can be combined together and solved quickly, which allows Klee to examine more

execution states than it can using other strategies.

Chapter 2 describes the motivation for TLSH, and covers graph comparison and

locality-sensitive hashing techniques relevant to its development. Chapter 3 describes

TSH in detail. Chapter 4 gives the results of performing two groups of tests that

verify the accuracy and usefulness of TLSH. Chapter 5 summarizes the contents of

the dissertation and lists avenues for further related research.
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II. Background

All but the most trivial programs (e.g., Hello, World) process some sort of input.

This input may come from text entered by the user, a file read from a disk, bytes

from a network socket, or a multitude of other sources. Test inputs are created to

test the behavior of these programs. For most programs, it is not feasible to test

every possible input: consider a program that reads just 8 bytes of data and therefore

has 264 possible inputs. Assuming (rather unrealistically) that we can test a billion

inputs each second, it would take approximately 585 years to test all of the possible

inputs, and that doesn’t even include the time necessary to actually run the program

for each input and analyze the output for errors. Clearly, only a small subset of the

possible program inputs can be used to test the program.

The work presented here focuses on a particular solution to automatically gene-

rate a small set of test inputs that do a “good” job of testing a piece of software:

symbolic execution [14]. In symbolic execution, the tester specifies that some input is

symbolic. As the program is symbolically executed, the possible range of values that

that input (and any data that is dependent on that input) can take on is tracked as

each instruction or line of code is executed. When program execution terminates, or

when an anomalous state is encountered (such as a reference to a null pointer), then

a concrete value in the range of possible values is computed, and that value is saved

as a test case. Symbolic execution can find test cases that exercise bugs that would

likely never be found using random inputs or even inputs generated by developers

and users. To reduce the cost of performing many expensive (in terms of processor

time and memory required) computations in order to determine what values a sym-

bolic variable can take on, this dissertation explores a technique, state merging, that

reduces the number of computations required, without making those computations

so much more expensive as to outweigh the benefits fewer computations.

6



2.1 Program Testing

Most software is subjected to some sort of testing before it is released [45]. Ve-

rification testing applies a small number of inputs to a program to ensure that the

program complies with requirements. Unit testing checks that individual modules

meet their specifications. User testing analyzes whether the program can be success-

fully used and understood by the target user base.

However, it is not sufficient that a program simply work properly for all “good”

inputs, but that it fails gracefully when presented with a “bad” input. Consider the

anecdote presented by Miller [44] as motivation for their automated UNIX utility tes-

ter: a user is logged in to a workstation via a dial-up connection when bad weather

starts generating all sorts of noise on the telephone line, permuting the commands

being sent. No sophisticated user would expect utilities to work properly when pre-

sented with junk input, perhaps the most that could be expected would be a helpful

error message about what went wrong. To the authors’ surprise, the programs didn’t

simply terminate, but many would crash entirely, indicating the possible presence of

serious bugs.

2.1.1 Test Concepts.

Software testing can be partitioned into two broad categories [45]: black-box tes-

ting and white-box testing. Black-box testing does not utilize any information about

how the program operates, only program inputs and outputs. White-box testing uses

information about the logic or structure of a program to test it.

In order to exhaustively black-box test a program, every possible input must be

applied [45]. For programs with non-trivial input space, this is not possible. In order

to select a small number of inputs to apply to the program while maximizing the

chance of finding bugs, strategies such as partitioning the input space into equivalence

7



classes and testing at least one member of each class [63], testing inputs that are

boundary values [63], or cause-effect graphing (a method of formalizing the definition

of a piece of software and using that formal definition to generate test inputs) [45]

are utilized.

Because the structure of a program is used in a white-box tester, a program may be

exhaustively tested by exercising every possible execution path through the program

[45]. While this likely requires significantly fewer inputs than exhaustive black-box

testing, it is still not feasible for many programs with loops.

In order to quantify how well a set of inputs exercises a piece of software, the

concept of coverage is often used [27]. Statement coverage or line coverage is the

percentage of statements or lines of code that are executed when the test inputs are

applied. Because of the intricacies of code, statement coverage often fails to detect

errors. A stronger measure of coverage is branch coverage, which is the percentage

of branches in the program that are taken. In order to achieve 100 percent branch

coverage, each conditional must evaluate to true for some test case and false for some

test case.

2.1.2 Random Black-Box Testing: Fuzzing.

Fuzzing is a black-box testing strategy where inputs are randomly generated. Mil-

ler, et al. [44] developed a random input generator for UNIX command-line utilities

that they dubbed a “fuzzer.” When used as part of a framework that applies the

inputs to utilities and then monitors their execution to see if the program crashes

and logs the results, the fuzzer discovered a significant number of bugs: between a

quarter and a third of the utilities tested crashed on any given system.

Because of the simplicity of generating random inputs, a number of fuzzing fra-

meworks have been developed since Miller’s fuzzer was introduced, and fuzzing has

8



become a fairly common method of testing for bugs [59]. Eventually though, the

“low-hanging fruit” will have been picked, and simply fuzzing for longer isn’t likely

to lead to better code coverage or discovery of more bugs [25].

2.1.3 White-Box Fuzzing.

If the goal of an automated test system is to enhance coverage, then a priority

should be placed on generating test cases that cover new lines or branches of code.

Similarly, if the goal of testing is to discover an exploitable vulnerability, then there

are certain pieces of code that are likely to contain exploitable bugs, such as calls to

strcopy [7], and the goal should be to generate test cases that exercise that code. In

either case, specific sections of code can be targeted for execution.

Taint analysis [7] tracks dependencies between pieces of data at different locations

in a program. By propagating the dependencies of each piece of input, the fuzzer

can determine what sections of the input must be modified to change execution of

the program under test. This approach provides more coverage than other fuzzing

techniques, while still being relatively fast.

Taint analysis does not guarantee that the fuzzer can find an input to reach the

targeted code (because the fuzzer may need to try every permutation of the input)

[59]. In order to either guarantee that a test case is generated that tests the targeted

code section or prove that no test case will test it, a more complete model of the

program must be used.

The reason that more fuzzing eventually doesn’t lead to better code coverage is

that even “small” inputs represent an enormous search space, and some sections of

code are only reachable from a tiny sliver of the search space. Consider a conditional

(if-then-else) statement that checks for equality between a 32-bit integer variable and

a constant. Such statements are prolific in code, and certainly doesn’t represent a
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complex or unusual condition. The integer can take on 232 different values. Ameri-

can Fuzzy Lop [1], a highly sophisticated fuzzer, reportedly can execute thousands of

inputs per second, so assume that we can apply 10,000 inputs per second. At that

speed, searching the entire input space would still take 119 days. Considering that

many bugs require an input of more than four bytes to be triggered, it is understan-

dable why fuzzing only catches “shallow” bugs. What is needed is a way to reason

about the semantics of the program in order to find an input that satisfies a particular

branch condition. This reasoning is accomplished by solving satisfiability problems.

2.1.4 Satisfiability Problems.

The boolean satisfiability problem, frequently referred to as simply the SAT pro-

blem, is as follows: given an expression comprised of variables and logical operators,

does there exist a consistent assignment of all the variables that results in the ex-

pression evaluating to true [21]? SAT is the first known NP-complete problem, and

as such, there is no known polynomial-time solution to solve the generalized SAT

problem [17]. However, advances in computing power and algorithms have allowed

for large instances of SAT to be solved.

The output of a satisfiability solver is either an assignment of variables that si-

multaneously satisfies all of the formulas (a “model”), or the result UNSAT if the

formulas cannot be simultaneously satisfied.

2.1.5 DPLL Solvers.

Most modern SAT solvers are based the work of Davis, Putnam, Logemann, and

Loveland [21, 20] who describe a backtracking procedure to compute the satisfiability

of an expression. Since each boolean variable must be true or false in any assignment,

the DPLL algorithm selects a variable and assumes an assignment. That assignment

10



is propagated through the expression, and the result is an expression with one fewer

variables. This expression may contain an inconsistency, in which case the algorithm

backtracks and assumes the opposite assignment. If the resulting expression is not

inconsistent, and more variables remain, the algorithm is repeated. At the end,

the algorithm either terminates with a satisfying assignment (the assumptions made

during the successful algorithm traversal), or if all backtracks are taken and it is

still not possible to solve the remaining expression, the original expression is not

satisfiable. Solvers employing such a backtracking algorithm are known as DPLL

solvers after the original authors.

2.1.6 Satisfiability Modulo Theories.

SAT can be extended to include expressions in first-order logic. This allows for

expressions to encode more complex problems by including “theories” such as integers,

real numbers, or arrays [49]; these are referred to as Satisfiability Modulo Theories

(SMT) solvers. Since their introduction, decision procedures integrating multiple

theories have grown increasingly advanced; a few of the notable advancement are

highlighted here.

Nelson and Oppen [47] proposed a method that efficiently simplifies theorems

containing statements from multiple theories by finding equalities in one theory and

propagating them to other theories. Examples of equalities that could be propagated

are the solution to a system of linear equations or the result of a read operation

following a write operation to an array. Model-based theory combination [22], used

in Z3 [9], maintains a model for each theory, and attempts to minimize the number

of equalities that must be propagated between solvers for different theories.

Simple Theorem Prover (STP) [23], simplifies the problem as much as possible

using a linear system solver, then uses a novel refinement loop that heuristically selects
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a subset of the simplified problem and converts it to a boolean SAT problem. If the

SAT problem is unsatisfiable then the entire problem is unsatisfiable, otherwise, STP

tests the solution returned by the SAT solver against the remainder of the simplified

problem. Any terms that are not satisfied by the solution are added to the subset

being sent to the SAT solver. Eventually, a (not necessarily proper) subset is found

that is unsatisfiable, or a solution is found that satisfies the entire problem. This

allows STP to solve SMT problems that feature large arrays quite quickly compared

to Z3. SMT solvers are leveraged in white-box testing in order to reason about

programs.

2.1.7 Reasoning About Programs: Symbolic Execution.

In order to discover inputs to reach code that a fuzzer misses, some part of the

input to the program can be made symbolic, which allows it to take on any value

instead of taking on a single concrete value. As the program executes, a system of

constraints on this input that will cause the program to follow a particular path can

be tracked. When the program terminates or a bug is encountered, this system of

constraints can be solved in order to generate an input that exercises that path. The

constraints are solved by a Satisfiability Modulo Theories (SMT) [47] solver.

2.1.7.1 Finding Smart Permutations.

One relatively simple symbolic execution technique is to begin with a concrete

input, execute the program, and symbolically generate similar inputs that exercise

different paths in the program [26]. This technique can be applied to any program,

even if the source code is not available. Microsoft developed an internal tool, Scalable

Automated Guided Execution (SAGE) [25], that starts with a valid program input

and then uses symbolic execution to generate permutations of that input. It does so
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by first executing the input and logging each instruction that is executed (the trace).

The trace is then analyzed with part of the input being made symbolic. Whenever

a branch is encountered that is dependent on the symbolic input, SAGE attempts to

solve for an input that takes the opposite branch that the original input took. This

search scheme is dubbed Generational Search. The authors state that starting from

a single input, thousands of test cases can be derived in such a manner. It is built

on top of the TruScan [46] replay framework for iDNA [8] traces, which dramati-

cally simplifies the task of keeping track of the program state because it provides an

interface to useful program information such as symbols information, system calls,

memory allocations, and data flow. To solve the SMT constraints generated during

symbolic execution, SAGE relies on the Z3 solver [9]. Since it’s development, SAGE

has discovered numerous security vulnerabilities and other bugs in Microsoft products

[25].

Another tool that works in a similar manner is Pathgrind [3], which builds upon

the widely-used Valgrind [48] program-checking suite to symbolically execute binaries.

Valgrind instruments native code and executes it, automatically checking for a number

of different errors. Valgrind generates an intermediate form of the program being

checked, and Pathgrind symbolically executes this intermediate form. Like SAGE,

Pathgrind also starts with a valid input, and then symbolically executes the program

to find permutations of that input that cause the program to take different execution

paths. Pathgrind uses Simple Theorem Prover (STP) [23], a theorem prover designed

for the large conjunctions typically encountered in path constraints.

2.1.7.2 Symbolic Source Code Analysis.

SAGE [25] and Pathgrind [3] can enhance code coverage and find bugs with mini-

mal additional work by the developer; all they require is an executable program and a
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single valid input to produce a multitude of new test cases. While these tools are able

to quickly generate a number of interesting permutations of existing concrete inputs,

they are just modifications of inputs that are supplied by the tester, and not a search

through the multitude of other execution paths through the program. In order to

more exhaustively search the state space of a program, a more substantive model of

the program’s behavior can be developed. A couple of approaches that proved to be

useful create a model of the program directly from the source code. Access to source

code can simplify some aspects of symbolic execution because of the broad array of

information directly available, such as symbol type and program structure.

EXE [13] and Directed Automated Random Testing (DART) [57] both analyze

high-level source code (C code) and generate inputs to drive program testing. Some

input is marked as symbolic, then for each path in the program the constraints re-

quired to follow that path are collected, and an SMT solver is used to check if the

path is feasible, and if so, generate a test case. Both tools are capable of automa-

tically detecting errors such as failed assert statements, program crashes, memory

out-of-bounds, etc.

EXE [13] uses Simple Theorem Prover (STP) [23] to solve the constraints genera-

ted during symbolic execution. STP showed a significant improvement compared to

the state-of-the-art solver at the time, the Cooperating Validity Checker Lite (CVCL)

[6]. EXE discovered previously unknown bugs in the packet filters used in FreeBSD

and Linux (in code that had been in use years without the bugs being discovered), in

the udhcpd DHCP server, and in a commonly used regular expression library.

DART [57] was able to generate inputs for a majority of external functions in

the oSIP, an open-source Internet-Protocol (IP) telephony library, that crashed the

program, including finding at least one bug that was considered a significant security

vulnerability. The theorem prover (SMT solver) used by DART is not revealed in the
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paper.

2.1.7.3 Modified Virtual Machines.

High-level languages can be compiled to an intermediate representation, often

called bitcode or bytecode, instead of natively executable code. This can allow for

operations that are likely to result in bugs, such as bounds checking, to be moved into

a runtime that can be validated before release (as Microsoft’s .NET framework does),

or allow for a single optimizer and code generation engine to be used with a multitude

of compilers (as in the LLVM project [37]). These intermediate representations are

more compact than the source code, are portable(they can be executed on any plat-

form with the correct runtime engine), and often contain more type information than

is embedded in an executable binary for x86 architecture. Because a virtual machine

already exists that can process the intermediate form, these virtual machines can be

modified to symbolically execute the same code.

Pex [61] is a test-generation tool for .NET programs that utilizes symbolic exe-

cution to generate a small test suite with high coverage for a .NET program. When

used to generate tests for an extensively-used .NET component, Pex was able to find

a number of previously undiscovered bugs, including a number of assertion violations.

Pex can analyze any .NET component, regardless of the language it was written in,

but the associated Visual Studio plugin only supports C#.

Klee [12] is a symbolic execution tool that executes LLVM bitcode, along with

a set of libraries (klee-uclibc) to allow common inputs (files, stdin, etc) to be made

symbolic. When it was introduced, Klee was used to enhance test coverage and find

previously undiscovered bugs in the coreutiles [2] library, and to uncover functio-

nal differences between Busybox [62] and Coreutils utilities that were supposed to

function identically. Klee is open source, remains under active development, and is
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used to test the ideas put forth in this document.

2.2 Dynamic Symbolic Execution and the Path Explosion Problem

In dynamic symbolic execution, a path through the program is executed until it

terminates or an error condition is found [59]. In practice, this is implemented by

keeping track of a pool of execution states, each one containing, at a minimum, the

address of the next instruction to be executed, expressions representing registers and

memory that are in scope, and a path constraint that describes the conditions that

cause the program to traverse the same execution path that the execution state has

executed thus far [28]. A state is selected and executed for some time slice, or until

it halts. When branches in the program are encountered, new states are created

and added to the pool. When a state halts, it is removed from the pool. Symbolic

execution continues until all states have terminated, or until a time limit is reached.

This process is illustrated in Figure 1.

When a branching instruction is encountered during symbolic execution, each fe-

asible path of the branch is explored. As the program symbolically executes and

branches are encountered, there is the possibility for exponential growth in the num-

ber of program paths to be analyzed [14]. If a program does not halt, then all possible

paths through the program cannot be enumerated or explored. This is referred to as

the Path Explosion Problem. The path explosion problem can be mitigated by pri-

oritizing the symbolic execution of promising paths, analyzing a program modularly

to decrease the number of branching instructions encountered, or merging execution

states together [59].
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Figure 1. Dynamic Symbolic Execution.

2.2.1 Prioritizing Promising Paths.

High code coverage can be achieved by selecting the most promising paths and

symbolically executing those. Klee [12] interleaves random path selection, which

“opens up” areas of the program that have not been symbolically executed yet, and

a heuristic search to select states that are more likely to cover new code. This allows

Klee to achieve high code coverage in less time than random search alone. Klee

achieves higher code coverage than the test suite for Coreutils [2], which is a mature

and highly-tested piece of software.

Li, et al. [39] use subpaths of length n as a heuristic to perform subpath-guided

path exploration, which is a search technique that prioritizes “less traveled” areas

of the program being tested in order to find bugs. Klee [12] found bugs when using

subpath-guided path exploration that were not found using other search technique.
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Prioritizing more promising execution states to explore still leaves the searcher

with an exponentially growing number of states to choose from. Given the finite

resources available to explore paths, the symbolic executor will still be forced to dis-

card or ignore the vast majority of paths (see Appendix B for how the path explosion

overwhelms the symbolic executor), and heuristics don’t guarantee that no bugs lie

on those unexplored paths.

2.2.2 Modularly Testing Programs.

The difficulty of symbolic execution generally increases as the size of the program

being tested grows. By testing a program modularly the path explosion problem

can be mitigated. SMART [24] extends DART [57] by testing functions individually

and generating function summaries. When a function is called with symbolic values,

the summary is used, instead of exploring potentially hundreds of paths through the

function.

Concolic testing [58] combines concrete and symbolic execution to mitigate the

difficulty of having purely symbolic variables. Traditional concolic testing performs

concrete and symbolic execution in parallel, and replaces any unsolvable constraints

encountered during symbolic execution with the concrete values taken on during

concrete execution. Hybrid concolic testing [40] interleaves concolic and random

testing. Testing begins with random testing (fuzzing). When the fuzzer doesn’t

uncover new statements for a predetermined number of steps, the algorithm switches

to concolic execution until an uncovered statement is encountered, at which point

more random testing is performed.

Lazy expansion [41] builds on concolic testing by assuming that low-level library

functions have already been tested. When a call to a library function is encountered

during concolic execution, instead of entering and symbolically executing the library
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functions the called function is replaced by an unconstrained input, and concolic

execution continues. The concolic execution algorithm will generate a number of

execution paths, including some that may not be feasible due to the replacement

of the function call with an unconstrained input. To determine the feasibility of

executing these paths, the algorithm only has to find a path in the library function

that satisfies the constraints encountered during concolic execution. By only searching

for a relevant path in the library function, the algorithm avoids spending unnecessary

time testing the library function.

Klee [12] is able to execute instructions that don’t reference symbolic data at

“native” speed (native to the LLVM virtual machine, not the underlying hardware),

and so interleaving multiple search strategies in Klee is able to achieve some of the

benefit of hybrid concolic testing. Lazy expansion requires that certain libraries be

abstracted, this works well for programs that rely only on a small number of libraries,

or perhaps only on system calls, but in a complex program with many library de-

pendencies, there will still be an exponential explosion in the number of paths to be

explored. In order to actually reduce the explosion, states must be eliminated from

consideration somehow. State merging accomplishes this reduction in the number of

execution states under consideration.

2.2.3 State Merging.

Another method for alleviating the path explosion problem is to explore multiple

paths simultaneously. Babi and Hu [5] reduce the time to solve multiple SMT que-

ries by representing verification conditions (SMT queries) as directed acyclic graphs

(DAGs), then reusing “facts” learned solving one VC when solving another VC. The

DAGs used to represent the VCs are similar to those used in this paper.

If a program arrives in an identical execution state via two different execution
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paths, then both of those states will produce identical results going forward, and only

one of them needs to be kept [10]. RWset (short for Read/Write set) expands on this

concept. If two execution states differ only in variables that are never read again,

they will also produce identical results going forward and only one of them needs to

be executed. Discarding redundant paths can reduce the number of paths explored

by up to an order of magnitude, while achieving the same coverage.

State merging reduces the number of paths to explore by merging similar execution

states, essentially merging two or more execution paths together and executing those

paths simultaneously for the remainder of symbolic execution [28]. Kuznetsov, et al.

[36] compute a query cost estimate (QCE) for a pair of symbolic execution states

that is a heuristic estimate of the computational effort that will be required in order

to symbolically execute the two states if they are merged or kept separate [36]. This

estimate is then used to define a similarity relation between two states, and the

states are merged if they are similar. Their similarity heuristic uses information

gleaned by pre-processing the CFG of a program to be symbolically executed. The

QCE attempts to limit the increase in calls to the SMT solver caused by merging

states. Opportunistically merging states whenever the possibility presents itself does

not necessarily lead to enhanced code coverage [18]. This is due in part to the fact

that some state merges result in a path constraint that is more difficult to solve, and

so any speedup gained by exploring fewer paths is lost to extra time spent solving the

path constraint. This dissertation presents a method by which the path constraints

can be efficiently compared, so that merges that significantly increase the difficulty

of symbolic execution can be avoided.
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2.3 Efficient State Comparison

There are three challenges encountered when attempting to compare the path

constraints of execution states during symbolic execution:

1. Due to the path explosion problem, there are often 100,000 states or more in

the state pool. Comparing each in a pairwise manner results in an unfeasible

number of comparisons being required.

2. A good similarity measure for SMT constraints has not previously been publis-

hed.

3. SMT and SAT problems lend themselves to representation as trees, where inte-

rior nodes of the tree are some sort of operator and leaf nodes are constants or

variables. The best published methods for comparing trees are still quite slow

for trees of the size encountered during symbolic execution; computing the tree

edit distance between 1000 trees generated from SMT queries during symbolic

execution takes between 12 and 24 hours.

In order to develop a comparison technique that overcomes these challenges, this

section examines hashing techniques that facilitate finding similar states without per-

forming pairwise comparisons, similarity measures used to find programs that are

similar to each other, and graph comparison techniques.

2.3.1 High-Collision Hashing.

Traditional hashing techniques for file integrity checking and cryptographic veri-

fication are designed so that changing a single bit in the file being hashed changes

the digest [53]. At the other extreme, hash functions for clustering and retrieval have

been designed such that inputs that are similar (for some definition of similarity) have

a high probability of hashing to the same digest.
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Existing locality-sensitive hashing techniques include Min-hash [11], which takes a

sample of two sets S1 and S2 and estimates an indicator of similarity called the Jaccard

Index, given by |S1∩S2|/|S1∪S2|. Locality Sensitive Hashing (LSH) [30], which reduces

the dimensionality of high-dimension data, is leveraged for approximate nearest neig-

hbor problems [4] in Euclidean space, and is applicable to other domains as well,

including the set-similarity problem addressed in [11]. Researchers in digital foren-

sics and spam detection have developed Context Triggered Piecewise Hashes(CTPH),

hashes that only consider part of an input [34].

2.3.2 Program Recognition and Similarity.

The problem of recognizing similar path constraints is similar to recognizing pieces

of code that are similar to each other. Recognizing when two pieces of code are similar

is useful for detecting common erroers, or for attributing a piece of software to an

author. Rich and Willis [55] generate a flow graph representing a piece of software,

then search for known subgraphs (corresponding to cliches in the library) within that

graph. In order to recognize the subgraphs, a context-free grammar for generating

graphs is used.

Collberg and Nagra [16] outline several methods of analyzing the similarity of

two software programs for the purpose of software birthmarking, software forensics,

plagiarism detection, and clone detection. In order to detect software plagiarism or

cloning, the program dependence graph (PDG) of a function is generated. A PDG

is a flow graph in which the vertices represent statements within a software program

and and edges represent a dependence of one statement on another. The detection

methods then search for identical or similar subgraphs within 2 PDGs in order to

detect plagiarism or software cloning. A birthmarking method is presented that first

computes metrics on a program based on the layout, style, or structure of a program,

22



and attributes that program to a particular author based on a vector formed by those

metrics.

Other program recognition methods focus on the detection of malware. These

techniques attempt to be robust against obfuscation methods, and fast enough to

be run in “real-time,” as in anti-virus tools used to protect personal computers.

Cesare and Yang [15] present two different methods of generating a feature vector of

a program from its control flow graph (CFG), one based on k-subgraphs within the

CFG and one based on Q-grams based on a canonical string representation of the

CFG. They then compare the feature vectors to feature vectors of known families of

malware. Their work builds on that of Kruegelm, et al. [35], who fingerprint network

communications containing executable code in search of self-propagating malware.

Jin, et al. [31] classify functions within a program in order to associate them with a

library of known functions. They first create a hash associated with each basic block

within the function, then apply the Min-hash algorithm [11] to create a hash of each

function. Due to the properties of Min-hash, similar functions hash to the same value.

While these hashes take into account the input-output behavior of each basic block,

selecting states for state merging benefits from taking into account which program

data the functions were applied to as well [36].

One commonality between many of these methods of recognizing similar programs

is that they analyze some sort of graph that captures relevant information about the

program. In the following subsection, the idea of a graph is formalized, and what it

means for two graphs to be similar is discussed.

2.3.3 Graph Comparison.

A graph is a set of vertices and edges, where each edge has two endpoints that

are vertices. If the endpoints of the edges are ordered, then the graph is directed,

23



otherwise is it undirected. If each edge has two distinct endpoints, then the graph is

simple. A connected, undirected graph with precisely one fewer edges than vertices

is a tree, which may be rooted or not.

2.3.3.1 Graph Isomorphism.

Two graphs are identical if there is a bijection between the nodes of the two graphs

such that the connectivity in the graph is maintained under the bijection. Determi-

ning whether or not two graphs are identical is known as the graph isomorphism

problem [19]. While it has not been shown to be a member of a complexity class

such as NP-complete, there currently does not exist a polynomial-time algorithm to

determine graph isomorphism in the general case. As an upper bound, all 2n possible

bijections must be tested (where n is the number of nodes in each graph.)

Nauty [29] and Bliss [32] are tools designed to compute canonical forms of a graph.

Two identical graphs will have the same adjacency matrix when placed in canonical

form. Since these do solve the graph isomorphism problem, none of these algorithms

work in polynomial time, but they are software that is generally quick and stable for

fairly small graphs.

2.3.3.2 Graph Similarity.

Zager and Verghese [64] developed an algorithm for evaluating the similarity of

two graphs. Their algorithm computes the pairwise similarity between each vertex

and edge in two graphs. It is based on the intuition that two vertices or edges are

similar if their neighborhoods are similar. The similarities are iteratively computed

until they converge.

Another measure of the similarity between graphs, in particular trees, is the edit

distance between them. Operations such as node insertion, removal, or renaming
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are assigned a cost, the minimum edit distance is the cost of the cheapest sequence

of operations that transforms one tree into another. RTED [50], the Robust Tree

Edit Distance, and it’s successor APTED [51, 52] are algorithms for computing the

minimum edit distance between trees. Extensively-used implementations of both are

provided by the authors.

Other techniques to compare graphs utilize the concept of a graph kernel, in which

structures of a graph are extracted and then fingerprinted, and graphs are compared

using their fingerprints [60]. Graph kernels have been used on databases of chemical

structures [60, 54], in combination with machine learning to classify a compound

based on known compounds, or to retrieve similar graphs from the database. Of

particular interest, Teixeira, et al. [60] use random walks in a graph as kernels, and

then use Min-hash to cluster the chemicals without having to directly compare the

graphs.

Manzoor, et al. [42] describe a technique that utilizes locality-sensitive hashing

on flow graphs, which defines a k-shingle on a graph, then uses hashing techniques

to cluster the flow graphs. The dataset used was a set of flow graphs generated by

capturing system calls while either benign or malicious activity was taking place on

a computer, with the aim of detecting malicious activity.

2.4 Summary

The purpose of testing is to find bugs (errors) in software. It is infeasible to

test a program by applying every possible input and observing that the program

exhibits appropriate behavior, so a limited number of inputs must be selected to

test the program. One way to automatically generate those test cases is symbolic

execution, where certain inputs are marked as symbolic and can take on any value

during execution. Symbolic execution is capable of “reasoning” about any feasible

25



path through the control-flow graph (CFG) of a program, where a single concrete

input only exercises a single path through the program. The number of paths through

the CFG grows exponentially as more branching instructions are executed; this is

known as the path explosion problem. One way to mitigate the path explosion problem

is to merge similar execution states together, which allows the symbolic executor to

explore multiple paths at once. Not all merges are equally good: merging some states

together results in path constraints that take much longer to solve, negating any

benefits gained from the merge.

This chapter presented a rationale for generating a small set of inputs to test

a program or function, several methods of varying sophistication and complexity

for generating those inputs, challenges encountered while performing one of those

methods (symbolic execution), and related work in the fields of high-collision hashing,

program recognition, and graph comparison. The remainder of the document builds

upon this foundation and presents a method of comparing the path constraints in

order to decide whether states should be merged together. The path constraints are

naturally represented as graphs, and the direct comparison of graphs to evaluate their

similarity takes a prohibitive amount of time. Various approaches to estimate the

similarity of two graphs are explored, and the remainder of this dissertation presents

and analyzes a novel technique to compare path constraints.
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III. Methodology

To select states to be merged without having to compare each of them, we pre-

sent a Tree Locality-Sensitive Hashing (TLSH) technique that quickly identifies path

constraints that have a similar structure. By selecting states with similar path con-

straints to be merged, we avoid the computational penalty seen in previous state

merging efforts [18] that is caused by increasing the difficulty of a path constraint

when merging states, without the use of computationally expensive comparators such

as tree edit distance [52].

Hashing a path constraint is done by converting a SMT constraint into a flow

graph, finding a spanning tree in that flow graph, using the spanning tree to find

k-subgraphs in the graph, finding the canonical representation of each k-subgraph,

and finding a min-hash digest based on the unique subgraphs. The form of path

constraint used by Klee [12] is described, then each step of the hashing process is

presented, and finally an example is given that describes how a simple C program is

symbolically executed and the path constraints are hashed.

3.1 Path Constraints

Satisfiability Modulo Theories (SMT) solvers have been extended to solve a myriad

of satisfiability problems from different domains [47]. We focus on only constraints

that are composed of bit vectors and arrays, which are a natural way to encode

the path constraints generated during symbolic execution. Klee[12] further narrows

the range of constraints used by only creating constraints in a canonical form. This

simplifies the task of recognizing common elements between constraints.

Definition. An SMT constraint is an ordered set of quantifier-free bit vector

logic expressions. Each expression is represented as a rooted tree. Constraints are
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generated and stored in a canonical form (described below). A constraint is considered

satisfiable if and only if every expression in the set is simultaneously satisfiable; in

other words, the constraint is the conjunction of the expressions comprising it.

Internal nodes of a tree representing an expression are operators, and child nodes

are arguments to their parents. Note that the result of one operation may be an

argument to another operation. For example, two bit vectors could be added together,

and the result of that addition compared to a third bit vector.

Canonicalization. An expression is said to be canonical if it is well-formed

and obeys the following rules:

1. No expression has all constant arguments.

2. For boolean expressions:

• Boolean not is written as (false ==?).

• 6=, ≥, and > are not used.

• Only ∧, ∨, ⊕, and == logical operations are used.

• The only boolean operation which may involve a constant is (== false).

3. For any subtree representing a formula, a constant term must be on the left hand

side of the root node of the subtree. For example, subtraction by a constant c

is written as add(−c, . . .), not add(. . . ,−c).

4. Chains are unbalanced to the right.

Ordering. The expressions in each constraint are generated from an in-

struction trace of an executable being symbolically executed. The ordering of the

expressions in a query is preserved during the generation of the constraint, that is,

expressions generated from two different instructions in the trace will appear in the
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same order in the query as their instructions appear in the trace. TLSH utilizes this

ordering to prioritize the more recent instructions when computing the similarity of

the path constraints, so that execution states with long path traces do not end up

with an unchanging hash.

3.2 Hashing

Given a path constraint in canonical form, we generate a hash value in such a way

that similar constraints are likely to hash to the same value.

Convert to a Directed
Acyclic Graph (DAG)

Enumerate k-
subgraphs of the DAG

Canonicalize k-
subgraphs, and assign
each a unique token

Assign constraint
a hash value using
minhash algorithm

Enumerate k-subtrees
in the spanning tree,
rooted at the root

Find a spanning
tree in the DAG,
rooted at the root
of the constraint

For each k-subtree,
replace the edges

removed when forming
the spanning tree

Figure 2. Tree Locality-Sensitive Hashing (TLSH) Algorithm Diagram.

3.2.1 Conversion to a DAG.

Whereas previous work has typically used the Control Flow Graph (CFG) of a

program as the flow graph of interest, this work represents SMT constraints as flow

graphs. Flow graphs contain three types of nodes:

Source Nodes which have only edges leaving the node;

Interior Nodes which have edges both entering and leaving the node; and
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Sink Nodes which have only edges entering the node.

Intuitively, when a constraint is represented as a flow graph, there is a sink node

inserted for each unique leaf node in the constraint tree, a single source node that

corresponds to the root node of the constraint tree, and an internal node in the flow

graph for each unique internal node in the tree other than the root.

Let an SMT constraint be represented as φ = (T, r), where graph T = (ET , VT )

with edge set ET and vertex set VT is a tree rooted at vertex r ∈ VT . For some

x, y ∈ VT , we say that (x, y) ∈ ET if and only if there is an edge from x to y in T . Let

children(t) be the set of children of a node t, that is, {e|(t, e) ∈ VT} and the empty

set if t is a leaf node.

The flow graph will be represented by the graph G = (EG, VG), where EG is a

set of directed edges and VG is a set of vertices. The functions add vertex(v) and

add edge((v1, v2)) add a vertex or an edge to G, respectively. Throughout the process

of forming the flow graph the algorithm maintains a hash table H : VT → VG that

maps nodes in the tree to nodes in the flow graph.

A constraint tree can be added to a flow graph using Algorithm 1.

Note that Algorithm 1, if used on constraints V C1 and V C2, will generate the

Maximally Shared Graph described in [5].

Colors can be assigned based on the type of a node(operator, constant, etc). There

are finitely many operations defined in any SMT theory, each operation can be given

its own color, or operations can be divided into categories and each category can

be assigned a color. Klee [12] defines less than 40 types of nodes in SMT trees. In

comparison, Kruegel, et al. [35] use 214 colors when coloring flow graphs.

To generate a single flow graph from a set of constraints {φ1, . . . , φn}, we insert

n− 1 binary and nodes in the graph. How this is done is described in Algorithm 2.

If vi is the vertex corresponding to the root of constraint tree φi, then the resulting
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Algorithm 1 The function Open

1: function Open(t)
2: if c ∈ H then

3: return H [c]
4: end if

5: if |children(t)| > 0 then

6: n← new node
7: H [t]← n
8: add node(n)
9: for all c ∈ children(t) do
10: add edge(n,Open(c))
11: end for

12: return n
13: else

14: v ← new node
15: H [t]← v
16: add edge(v)
17: return v
18: end if

19: end function

Algorithm 2 Generating a flow graph from a query

1: n←Open(φ1)
2: for i = 2, . . . , n do

3: m← new node
4: insert edge(m,n)
5: insert edge(m,Open(φi))
6: n← m
7: end for
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flow graph looks like Figure 3.

∧

vn ∧

vn−1 ∧

v2 v1

. . .. . .

. . .

. . . . . .

Figure 3. A flow graph generated from the query {φ1, . . . , φn}.

This places the nodes generated from the last constraint added closest to the

source node of the flow graph.

3.2.1.1 More Compact Variants.

Conceptually, the source nodes in the flow graph are some form of terminal node

in a constraint, such as a constant value or a symbolic variable. In Algorithm 1, a

node is terminal if it is a leaf node in the query. If instead of checking for the number

of children in line 2, we check to see if the node is of some terminal type, then the flow

graph that is formed will be more compact. As an example, consider a query that

has an input array that is indexed using constant indices. Algorithm 1 will create a

source node for the array, a source node for each distinct index used, and an interior

node for each array read operation. A precise variant would create a single source

node for each unique Array/Index pair. An even more compact but imprecise variant

would create a single source node for the array and discard the index, capturing the

fact that an operation depended on the array but discarding which element of the

array it depends upon.
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Another useful variant is to replace nodes of the form (false == φ) with a special

node of type ¬φ. This not only reduces the size of the graph by replacing 3 nodes with

2, it removes the tree-like structure of the negation, which means that when finding

connected k-subgraphs including the root, a subgraph that includes φ without the ¬

operation is not included.

3.2.2 Finding k-subgraphs.

The features of the flow-graph that we use to form the hash value are k-subgraphs,

or subgraphs with precisely k vertices. We use only k-graphs that include the root

(source) node of the flow graph, and further require that in order for a vertex to be

included in a subgraph, it must be reachable from the source node in the subgraph

(there must be a “chain” of vertices from the source node to every other node).

Much like in previous work focusing on CFGs[35, 15], k-subgraphs are generated

using a three-step process: a depth-first spanning tree (of height at most k) rooted

at the sink node is generated, k-subtrees of that spanning tree that include the root

are found, and finally the graphs induced by the vertices in each k-subtrees (each a

k-subgraph of the flowgraph) are canonicalized. This method has been fast enough

to be useful even in large graphs, but only generates a subset of the k-subgraphs of a

graph.

3.2.3 Canonicalizing Subgraphs.

Graphs are canonicalized using the Bliss[32] toolkit. The result of canonicalization

is an adjacency matrix. Two isomorphic graphs are guaranteed to have the same

adjacency matrix after canonicalization. Each adjacency matrix is converted to a

string of length k2, and these strings are used to generate the hash value of the

graph.
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3.2.4 Computing the Hash Value.

Min-hash [11] performs a random permutation of a finite set, and then selects the

first n elements of the permutation. Those n elements are the hash value for the set.

In place of a random permutation, a hash function may be used, and elements of the

set sorted by their hash value [38]. The n least elements when sorted this way form

the hash value of the set.

The MD5[56] hash of each of the strings found during the previous step is com-

puted, and then the strings are sorted by their hash value. The n strings with the

smallest hash value are the signature of the flow graph.

One important feature of the flow graph is that the constraints added to the

query more recently are closer to the source node, and therefore are more likely to be

included in a randomly selected k-subgraph that includes the source node. Once the

query reaches a certain size, it is unlikely that the nodes generated by constraints that

appear early in the query will be reached by the spanning tree (because the height is

constrained to k). In this sense, the hash functions a bit like a piecewise hash.

3.3 Example

Klee[12] includes several simple examples, one of which is get sign.c. This pro-

gram declares an integer, and then checks to see whether the integer is zero, positive,

or negative. When the integer is made symbolic and the program is symbolically

executed, Klee finds 3 paths through the program, one for each of the cases. The

example program is shown below. The three execution paths caused by the conditi-

onals on lines 8 and 11. On line 19, the variable a is marked as symbolic. Without

any symbolic variables, Klee is merely a bitcode executer. Klee also accepts symbolic

command-line arguments, symbolic standard input, and symbolic files.
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1 /∗
2 ∗ F i r s t KLEE t u t o r i a l : t e s t i n g a sma l l f unc t i on
3 ∗/
4
5 #include <k l e e / k l e e . h>
6
7 int g e t s i g n ( int x ) {
8 i f ( x == 0)
9 return 0 ;
10
11 i f ( x < 0)
12 return −1;
13 else
14 return 1 ;
15 }
16
17 int main ( ) {
18 int a ;
19 k lee make symbo l i c (&a , s izeof ( a ) , ”a” ) ;
20 return g e t s i g n ( a ) ;
21 }

Figure 4. Simple C Program.

3.3.1 Compilation to LLVM Bitcode.

In order to symbolically execute the program with Klee, it must first be compiled

to LLVM bitcode. The disassembly of the function get sign is seen below. The

conditional statements on lines 8 and 11 of the C source code are implemented on

lines 7-8 and 16-17, respectively.

3.3.2 Symbolic Execution.

The first if statement encountered in the program checks to see if the integer

x is equal to zero, so the path constraint to take the if statement is x==0. The

internal representation of this constraint in Klee is fairly complex, so the flow graph

representation has 13 vertices, as shown in Figure 6.

Representing a 32-bit integer value requires 11 nodes in the graph because it is

35



1 ; Function Attrs : nounwind uwtable
2 de f i n e i 32 @get s ign ( i 32 %x ) #0 {
3 %1 = a l l o c a i32 , a l i g n 4
4 %2 = a l l o c a i32 , a l i g n 4
5 s t o r e i 32 %x , i 32 ∗ %2, a l i g n 4
6 %3 = load i32 ∗ %2, a l i g n 4
7 %4 = icmp eq i32 %3, 0
8 br i 1 %4, l a b e l %5, l a b e l %6
9
10 ; < l abe l >:5

; preds = %0
11 s t o r e i 32 0 , i 32 ∗ %1
12 br l a b e l %11
13
14 ; < l abe l >:6

; preds = %0
15 %7 = load i32 ∗ %2, a l i g n 4
16 %8 = icmp s l t i 32 %7, 0
17 br i 1 %8, l a b e l %9, l a b e l %10
18
19 ; < l abe l >:9

; preds = %6
20 s t o r e i 32 −1, i 32 ∗ %1
21 br l a b e l %11
22
23 ; < l abe l >:10

; preds = %6
24 s t o r e i 32 1 , i 32 ∗ %1
25 br l a b e l %11
26
27 ; < l abe l >:11

; preds = %10, %9, %5
28 %12 = load i32 ∗ %1
29 r e t i 32 %12
30 }

Figure 5. LLVM Bitcode of the get sign function.
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a[] Concat
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a[]
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Figure 6. Flow graph for the path constraint x == 0.

stored as an array of bytes. Once the 32-bit value is formed, it is compared to zero.

When the first if statement is taken, the program eventually terminates with

no more symbolic branches. A test case is produced: x = 0. Symbolic execution

continues with the path constraint x 6= 0 (so that the first if statement is not

followed.) When the second if statement is encountered, the constraint x < 0 is

added to the path constraint. The flow graph representation of the full path constraint

at the second if statement is shown in Figure 7. Klee’s canonical form for expressions

does not include a “not equal to” operator, so a comparison to false is used to create

the x 6= 0 expression. The second expression in the path constraint, x < 0, is added

to the graph, and the two expressions are conjuncted together (at the top node of the

flow graph).

Again, execution eventually termites without any further branches depending on

symbolic data. Another test case is output in which x is negative, and the expression

x < 0 is negated and added to the path constraint. The flow graph of the third and
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^

Figure 7. Flow graph for the path constraint x != 0 and x < 0.

final expression sent to the solver is shown in Figure 8.

3.3.3 Hash Value Generation.

In order to quickly enumerate subgraphs, a spanning tree is found in the graph.

A spanning tree in the flow graph of Figure 8 is shown in Figure 9. k-subtrees rooted

at the root of the spanning tree are enumerated, and then the edges not contained

within the spanning tree with both endpoints in the subtree are added in order to

form a k-subgraph of the flowgraph.

Enumerating the 8-subgraphs of the flow graph in Figure 8 yields 78 subgraphs.

Canonicalization shows that 15 of those subgraphs are unique. Each of these unique

subgraphs is represented by a unique 64-character string of ones and zeros (the rows

of the adjacency matrix concatenated together). The MD5 digest of each of those

15 strings is computed, and the 5 least digests are the min-hash signature for the
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Figure 8. Flow graph for the path constraint x != 0 and x !< 0.

Figure 9. A spanning tree found within the flow graph of Figure 8.
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path constraint. In this example, each of the three constraints shown has a different

min-hash signature.

3.4 Implementation

TLSH was implemented in two versions of Klee [12], one that predates Klee’s

version numbering and includes Query Count Estimation (QCE) [36], and the most

current version of Klee at the time of implementation (1.3.0). Klee provides the basic

functionality required to merge two execution states together, this was augmented

with TLSH, and a command-line option exposed to select whether to use TLSH.

When merging two states, flow graph representations of their path constraints are

formed using a custom graph class that makes use of STL containers. 8-subgraphs

that include the root node enumerated, and passed to the Bliss [32] library for ca-

nonicalization using the default configuration. Min-hash[11] was then used to divide

each set of queries into “buckets” of similar queries, using n = 5. Only states with

constraints that hash to the same value are merged. TLSH hash values are “memoi-

zed”, so if the path constraint is not modified between calls to the TLSH computation

function, the TLSH is not re-computed.

3.5 Summary

The Tree Locality-Sensitive Hash (TLSH) method assigns a hash value to the path

constraints solved during symbolic execution. The TLSH is generated by constructing

a flow graph from the constraint, then finding particular k-subgraphs within the flow

graph. Each subgraph is canonicalized, and min-hash is used to generate a hash

value. TLSH with high probability assigns the same hash value to constraints that

are structurally similar to each other, enabling the identification of similar constraints

without performing a time-consuming pair-wise comparison between them.
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IV. Results

Evaluation of the Tree Locality-Sensitive Hash (TLSH) method verifies that it

both accurately identifies the nearest neighbor of each constraint, and that it is suit-

able for use in symbolic execution. All testing was performed using Klee [12] to

symbolically execute the GNU Coreutils [2].

To verify the accuracy of the hash method, constraints sent to the SMT solver

while executing the Coreutils were logged. TLSH was used to cluster the constraints,

and the tree edit distance between some constraints was computed using Apted [52]

in order to find the nearest neighbor of each constraint. The hash assigns the same

hash value to a constraint and its nearest neighbor in excess of 99% of the time.

To examine the suitability of the hash for use in symbolic execution, TLSH was

implemented in Klee, and a command-line option was added to select between diffe-

rent merging strategies. When combined with QCE [36], using the hashing method

resulted in an increase in instructions symbolically executed per second and in states

run until termination, without a significant decrease in the number of paths discovered

versus using QCE alone.

4.1 Hash Accuracy

To verify that TLSH acts as an approximation of the tree edit distance between

constraints, the pairwise distance between constraints was computed for select sets of

constraints.

To generate the representative queries, the GNU Coreutils[2] version 6.11 were

compiled into LLVM bitcode using Clang 3.4[37]. Each of the utilities tested in the

Klee[12] paper was symbolically executed with query logging enabled. Two query logs

were generated for each run, one that includes all queries and one that only includes

41



queries that were actually sent to the solver.

The accuracy of the hash was evaluated by computing the tree edit distance bet-

ween selected queries in order to find the nearest neighbor for each query. The TLSH

values for each query were calculated, and the probability that the hash assigned the

same signature to nearest neighbors was computed.

Since each query can be represented as a tree, the tree edit distance can be com-

puted between two queries. Apted[51, 52] is a fast, portable library for computing

the edit distance between two trees. Due to the number of pairwise comparisons

required, the tree edit distance between each query in a set cannot be computed in

a reasonable amount of time, so the distances between a sampling of queries was

computed. Approximately 1000 comparisons were performed: 500 between queries

with different TLSH values (queries in different clusters), and 500 between queries in

with the same TLSH value (and thus in the same cluster). The average intra- and

inter-cluster distance is shown in Figure 10.
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Figure 10. Average Tree Edit Distance Between 1000 SMT Constraints.

The results in Figure 10 do not conclusively show that the tree edit distance be-
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tween queries in the same cluster is smaller on average than the tree edit distance

between queries in different clusters. In order to better characterize the accuracy of

the hash, five utilities were selected that captured the range of outcomes from the

average tree edit distance analysis: cases where the intra-cluster distance was signifi-

cantly less than the inter-cluster distance(fold), where the opposite was true(hostid,

logname, rmdir), and where they were about the same(date). For each of these uti-

lities, 1000 queries were chosen at random (with a uniform distribution), and the

pairwise distances were computed between each query. Then, for each query that

was selected the nearest neighbor or neighbors were found. If the query and at least

one of its nearest neighbors were assigned the same signature by TLSH, the hash is

considered to be accurate for that query. The results are shown in Table 1. In each

case, the accuracy was above 99%.

Table 1. Hash Accuracy for Selected Utilities.

Utility Accuracy
Date 99.9%
Fold 99.3%
Hostid 99.9%
Logname 99.8%
Rmdir 99.9%

This verifies that the TLSH is an accurate approximation of the tree edit distance

between constraints, because it is very likely to assign the same hash value to a

constraint and its nearest neighbor in a set for each of the five utilities tested. The

accuracy and speed of TLSH indicate that it may be useful for selecting states to

merge during symbolic execution; this is confirmed by implementing it in Klee and

symbolically executing the Coreutils using state merging.
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4.2 Use in Symbolic Execution

In order to compare the hash method with Query Count Estimation (QCE) [36],

the hashing algorithm was implemented in a version of Klee that supports QCE.

QCE was implemented by its authors in a variant of Klee in 2012, with the source

code publicly released after publication. Since then, the Klee codebase has changed

significantly: notably, the version of LLVM which Klee extends is updated from 2.9

to 3.4. Modern versions of Klee with QCE do not exist in any public repository, and

the task of incorporating it is a software development task beyond the scope of this

dissertation. Therefore, tests involving state merging were performed by incorpora-

ting TLSH in the publicly released version of Klee with QCE. In accordance with the

recommendations of the Klee developers in 2012, the GNU Coreutils version 6.11 were

compiled using llvm-gcc, a variant of GCC 4.2 that is capable of emitting LLVM

bitcode.

Klee is based on LLVM, and borrows heavily from it’s optimized data structures

and algorithms, in addition to containing quite a bit of heavily optimized code of its

own. The hashing algorithm was largely implemented using standard STL containers,

and has not been optimized beyond memoization of hash values for execution states.

4.2.1 Test Setup.

The previously published best strategy for merging states is to perform a topolo-

gical search of the control-flow graph (CFG), attempting to merge states at control

flow join points. Whether two states are merged or not depends on the Query Count

Estimate (QCE) [36] heuristic, which is an estimate of the increase or decrease in

calls to a SMT solver if two states are merged or if each state continues execution

independently. One weakness of QCE that was identified by the authors is that it

does not take into account the difficulty of future solver calls, just the number of calls.
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Since QCE doesn’t take into account the difficulty of future solver calls, the min-

hashing approach is used along or in combination with QCE to further restrict the

merging of states so that states with dissimilar path constraints are not merged.

To provide a baseline measure of the difficulty of symbolically executing a par-

ticular program and set of inputs, each program is symbolically executed without

merging any states, selecting states at random for further execution. Table 2 provi-

des an overview of the strategies tested.

Table 2. Merging Strategies Tested.

Strategy Description
Baseline No Merging; random search
Naive All possible merges; topographical search
QCE Merge based on QCE; topographical search
TLSH Merge states with same hash; topographical search
Combined TLSH & QCE Merge based on QCE,

but only states with the same hash;
topographical search

The authors of Klee have published a set of symbolic input configurations that

achieve high test coverage on the Coreutils suite. The symbolic inputs differ signi-

ficantly from those used to test QCE [36]. When testing QCE, many (dozens) of

short (two-byte) symbolic command-line arguments were used to test each tool. The

original Coreutils tests using Klee utilize many fewer symbolic arguments that are

longer, in addition to symbolic files in some cases. In addition to providing high

code coverage, Klee found several previously unknown bugs while using these inputs.

Therefore, while some metrics (i.e. number of paths executed) may be improved by

using many short symbolic arguments, the configuration published by Klee’s authors

is closer to how software would be tested in the “real world.” This symbolic input

configuration was used, and the Coreutils were symbolically executed for up to an

hour each using each of the merging strategies discussed above. More information on

how the choice of symbolic inputs affects performance is available in Appendix B.
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Three different measures are recorded and analyzed: instructions executed, states

executed to completion, and partial paths discovered. The instructions executed is

the number of LLVM [37] instructions executed by the Klee virtual machine. This

number is reported by the virtual machine, and is a measure of how many times the

symbolic execution loop in Figure 1 was traversed. States executed to completion is

the number of execution states that halt, either due to Klee finding a bug or reaching a

program exit point. A counter is incremented when a halting state is discovered, and

this is when Klee generates a concrete test case that causes the program to traverse the

path traveled by the halting state. The partial paths discovered is an estimate of the

number of paths that have been analyzed thus far by Klee. The estimate is based on

the combined multiplicity, which is a measure of how many states there are currently

and how many states were merged to create the current states [36]. This includes

both paths that have halted and those that have not halted yet (paths explored by

execution states that are still in the state pool, requiring further execution).

4.2.2 Instructions Executed in 60 Minutes.

Figure 11 shows the number of instructions executed during 60 minutes using

the minhash merging strategy and using a naive merging strategy that merges states

whenever possible.

Results are presented on log-log graphs, with a the line y = x plotted as a solid

line. Points to the right of the line represent utilities where there was a gain in

performance when using the configuration on the y-axis, in this case Minhash. The

majority of the points lie to the right of the line, indicating that the Minhash merging

strategy does successfully mitigate against creating a state with a more complex path

constraint.

QCE attempts to reduce the number of queries that are sent to the SMT solver,
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Figure 11. Instructions Executed in 60 Minutes Using Naive Merging vs TLSH

which should also increase the rate of symbolic execution. Figure 12 compares the

instructions executed under the minhash strategy compared to a combined strategy

that uses both QCE and minhash, and Figure 13 compares the combined strategy to

QCE alone. The combined merging strategy executes more instructions than either

merging strategy alone.

The combined merging strategy executes more instructions than any other stra-

tegy that merges states together. Still, even a perfect merging strategy should cause

some overhead, because merging states together takes processor time that could be

spent executing instructions. Figure 14 compares the combined merging strategy to

symbolic execution with merging disabled.

There are several utilities where the baseline strategy (no merging) executed more

instructions than the combined merging strategy, but in the majority of cases, more

instructions were executed with state merging than without it. This is a somewhat

counter-intuitive result; the path constraints of the unmerged states should be simpler

to solve than those of merged states, and there is some overhead associated with
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Figure 12. Instructions Executed using TLSH vs TLSH & QCE Combined.

selecting states for merge and then actually merging them together. Figure 15 shows

how the number of instructions executed grows over time for the utility nice for each

strategy.

When symbolic execution first begins, the results are as expected: disabling mer-

ging increases the instructions per second. At a certain point, however, the system

essentially stops executing instructions. This seems to happen when Klee consumes

so much RAM that the system starts paging (the system had 32 gigabytes of RAM

for these tests, and no other applications were open during the test except for a ter-

minal window to monitor progress.) The only solution available in Klee to mitigate

this problem is to start discarding states when a memory limit is reached, but this

function has a ceiling of one gigabyte in the version of Klee that contains QCE, which

results in a significant number of states being discarded. Every discarded state is a

number of lost opportunities to find bugs and enhance coverage.
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Figure 13. Instructions Executed using QCE vs TLSH & QCE Combined.

4.2.3 States Executed to Completion in 60 Minutes.

When a halting condition is reached, Klee makes a final series of queries to the

SMT solver to generate a concrete test case that follows the same path through the

CFG that the halting execution state traversed. At every opportunity, Klee checks

the execution state to attempt to expose a bug, such as illegal memory access, and

failed to find an error. Thus, the more execution states that terminate, the more

faith we have in our coverage. This test counts the number of execution states that

terminate in 60 minutes.

In most cases, Klee did not output any terminated execution states without using

merging. Figure 16 shows the number of states executed to completion by the com-

bined merging strategy and without merging. The diamonds on the x-axis of Figure

16 represent utilities which completed a number of paths when merging was enabled

but did not complete any without state merging. Figures 17, 18, and 19 show the

number of states executed to completion by the combined merge strategy compared

to a naive strategy, minhash alone, and QCE alone respectively.
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Figure 14. Instructions Executed using Baseline (No Merging) vs TLSH & QCE Com-
bined.

The combined merging strategy that uses both QCE and TLSH to limit which

states are merged finds more terminal execution states, on average, than any other

merging configuration tested. This means that more test cases can be generated,

and we have a higher confidence that there are no undiscovered errors lurking in the

program being tested.

4.2.4 Partial Paths Discovered.

When published, QCE was evaluated largely based on the estimated number of

partial paths explored during a fixed time interval. Counting the paths explored with

state merging disabled is easy: we can count the number of feasible branches we have

taken. Directly counting the number of paths explored when states have been merged

is more difficult.

The multiplicity of an execution state is a measure of how many paths lead to that

execution state. When symbolic execution begins, it begins with a single execution

state of multiplicity one. When a branching instruction is encountered, the multipli-
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Figure 16. Terminating States using Baseline (No Merging) vs TLSH & QCE Combi-
ned.

city of the resulting states is the same as the multiplicity of the state that reached the

branching instruction. When two states are merged, the multiplicity of the new state

is the sum of the multiplicities of the merged states. State multiplicity overestimates

the number of feasible paths that have been executed, because it assumes that if a

51



100 101 102 103 104 105

TLSH & QCE Combined

100

101

102

103

104

105

N
a
iv

e
 (

a
ll 

m
e
rg

e
s)

Zeros

Figure 17. Terminating States using Naive Merging (All Merges) vs TLSH & QCE
Combined.

branch is feasible for particular state, then it would be feasible for every state that

was merged to form that state.

In order to estimate the number of paths discovered using the multiplicity of

execution states, the path explosion problem is modeled as a · 2b·n where a and b are

program-specific constants, and n is the growth parameter that indicates the progress

made in symbolically executing the program thus far[36]. Both the path count p and

the state multiplicity m can be modeled this way, with different values of a and b. The

growth parameter n is the same between them, as it depends on the search strategy.

Thus, m = am · 2
bm·n and p = ap · 2

bp·n. Solving for n and substituting it yields

log p ≈ c1 + c2 logm.

This relationship can be validated empirically by manually keeping track of the

states that are merged to keep an accurate record of path count and state multiplicity.

This record keeping approach also allows for estimates of c1 and c2. A least-squares

linear regression can be used to estimate c1 and c2 for a given program. Note that

this process must be repeated for each program and search strategy, doubling the
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Figure 19. Terminating States using QCE vs TLSH & QCE Combined.

time necessary to perform each experiment.

Figure 20 shows the estimated number of partial paths explored in 60 minutes

using the combined merging strategy and QCE alone.

Most of the cases are around the unity line, but four utilities exhibited a significant
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Figure 20. Estimated Paths Explored using QCE vs TLSH & QCE Combined.

increase in paths discovered using QCE alone: chcon, shred, cat, and tac. Chcon,

shred, and cat spend more than two-thirds of the hour attempting to merge states,

so something about the constraints being generated causes the hashing operation to

be more expensive in these cases. Unlike the rest of Klee, implementation of the

hashing algorithm uses standard STL containers, and could probably be optimized

further to reduce the overhead associated with it. Alternatively, it is possible to

recognize dynamically that Klee is spending a large percentage of its time calculating

the TLSH values, and TLSH could be disabled automatically. Tac didn’t exhibit the

same slowness as the other three utilities, but using TLSH in combination with QCE

didn’t produce gains over using QCE alone.

4.3 Summary

The approximate structural hash assigns the same hash value to constraints that

are close to each other under the tree edit distance metric. When a combined strategy

of QCE and constraint hashing is used to select states for merging, more instructi-
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ons per second are executed than with any other merge strategy. This causes more

execution states to be executed to completion as well. QCE alone discovers slightly

more partial paths (partial in the sense that they do not halt), but this is most likely

due to the overhead associated with actually computing the hash, not because QCE

alone is a superior strategy for selecting states.
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V. Conclusion

Symbolic execution allows software testers to make certain inputs symbolic, and

then explore every feasible path through the control-flow graph (CFG), checking for

errors as each instruction is executed, and finally generating a concrete test case that

causes execution to follow that path. The number of paths grows exponentially with

the number of branches in the CFG, and determining the feasibility of the graph

grows exponentially more difficult as the branch condition depends on more of the

symbolic input. These two exponentially growing problems, respectively known as

the path explosion problem and state explosion problem, cause symbolic execution to

consume significant amount of time and memory for any configuration of “real-world”

programs and inputs.

5.1 Summary

Previous work provides a method for minimizing the increase in the number of

queries from merging states together. This work attempts to avoid creating perfor-

ming merges that result in more difficult queries by examining the structure of the

path constraints of execution states to be merged, and only allowing the merge if the

path constraints are similar.

Similarity is evaluated by a novel Tree Locality-Sensitive Hash (TLSH) algorith

that represents the path constraint of each execution state as a directed acyclic graph

(DAG), finds certain subgraphs of size k in that graph, and uses those subgraphs as

shingles to compute a minhash hash of the graph. States are only merged if their

path constraints have the same TLSH hash.

When applied to path constraints solved during symbolic execution, TLSH accu-

rately assigns the same hash value to constraints that are nearest neighbors under
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Tree Edit Distance. Combining Query Count Estimateion (QCE) [36] and TLSH

increased the number of instructions executed per second over any other merge stra-

tegy tested. It also allowed Klee to execute more execution states until they halted,

allowing for the creation of more concrete test cases. QCE alone discovered slightly

more partial paths overall, likely due to the overhead of computing the graph hashes.

The graph hashing code could likely be tuned to provide greater performance.

5.2 Future Work

The state merging results presented here use a significantly outdated version of

Klee, because that is the only version that includes QCE. Newer versions of Klee offer

features that are a significant improvement: more diverse state selection strategies,

support for more than 1GB of RAM, more control of symbolic inputs, and most

significantly it is based on a newer version of LLVM.

QCE and structural constraint hashing should be ported forward to mainline Klee,

which is still being actively developed. The results presented in Appendix A indicate

that state merging would also be a viable strategy to mitigate the path explosion

problem using newer versions of Klee, although preliminary testing indicates that

there may be performance bottlenecks that occur during the memory-map comparison

that occurs while merging states, but these cannot be precisely identified until the

merging algorithms are ported forward.

Since no one merging strategy wins in every case, a strategy that was able to

dynamically select between merging strategies during symbolic execution would likely

be able to achieve better results than any one strategy alone. While there is likely

no way to know a priori which strategy will be best for a given program and set of

symbolic inputs, there is enough information available during symbolic execution to

identify likely missteps, and to correct them.
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Newer versions of Klee also support additional SMT solvers, notably Z3. It is

possible that the performance of Z3 would significantly differ from that of STP, which

is the solver used when merging states here.
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Appendix A: State Merging Simulation

To verify that merging states selected by the approximate structural hash algo-

rithm does not create a path constraint that is significantly harder to solve after the

merge, a simulation of the operations performed during state merging was performed.

The query replay tool included with Klee, kleaver, was modified to solve the

buckets by first disjuncting the queries in a bucket together, and then solving the

resulting query. This simulates part of what occurs when two execution states are

merged during symbolic execution. The time required to solve each of the queries

individually and to solve the entire disjuction was recorded using the Linux time tool.

The average speedup over all the buckets in each utility is shown in Figure 21. A

speedup of 0 indicates that it took the same amount of time to solve the queries in

a bucket sequentially as it did to disjunct all of them together and solve the result,

positive numbers indicate that it was faster to solve the disjunction than solve the

queries sequentially.
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Figure 21. Average Speedup for each Coreutil.

Of the 70 utilities tested, 55 of them (70%) experienced a speedup. Of the cases
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where disjuncting the queries was faster than solving them sequentially, the average

speedup was 29%. For a few of the utilities, notably seq, it was significantly slower to

disjunct the queries together and solve them. The seq utility accepts three parameters

as input: a starting value, an ending value, and a step size. It then prints a sequence

of numbers from the start value to the end value with the indicated step size. In order

to maximize the precision on a variety of different platforms, the values are read out

of the string and converted to a custom data structure that utilizes a long double

data type. This custom data structure is likely what causes the disjunction to be so

bad. The STP [23] solver does not handle disjunctions involving arrays well, because

the solving loop ends up running many times. Solving the same disjunctions in Z3

[9] is slower than solving the queries sequentially, but the slowdown is not nearly as

pronounced. The results from that test are summarized in Table 3. More data from

the symbolic execution and state merging simulation can be found in the Appendix.

Table 3. Comparison between Z3 and STP for Seq and Pathchk.

Utility Speedup (STP) Speedup (Z3)
pathchk -5.14 -2.11
seq -18.8 -0.686

This test shows that for most of the applications tested, it is faster to merge

the path constraints of states selected by the approximate structural hash than it

is to solve each of the constraints separately. This should translate into faster test

case generation when state merging is used to reduce the number of paths that are

symbolically executed.
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Appendix B: Selecting Symbolic Input

The choice of what inputs to make symbolic, along with their maximum size, has a

dramatic effect on the behavior of the symbolic execution algorithm. Small symbolic

inputs limit the range of the program that can be reached, while large symbolic inputs

can result in path constraints that quickly overwhelm the SMT solver and limiting

the execution depth that can be achieved in a reasonable amount of time.

Symbolic inputs available in Klee [12] include symbolic files, symbolic command

line arguments, and a symbolic stdin. Selecting appropriate symbolic input for a

program must be done on a case-by-case basis, as each program is designed to handle

input differently. As an example, consider the utility link, part of the Coreutils

suite. According to its documentation, link has two valid invocations: link FILE1

FILE2, which creates a link named FILE2 to an existing file named FILE1, and link

OPTION, where OPTION is either --help or --version, which causes link to either

print its documentation or version, respectively. Given the task of creating inputs

that might cause link to fail in some way, a number of scenarios may immediately

present themselves: what if link is called with no arguments, or with more than two

arguments? What if FILE1 doesn’t exist, or what if there is already a file named

FILE2? What if the option supplied to link is longer than either expected option?

With proper configuration of the symbolic inputs, the behavior of link under each

of these scenarios can be explored.

The running times and memory requirements of search algorithms are evaluated

based on their growth for some size parameter n. Because of the complexity of symbo-

lic execution, different symbolic search spaces of the same size will yield dramatically

different results, even when testing the same program. Previous research identified

the coreutil nice as a utility that experiences about an average speedup when state

merging is enabled using Query Count Estimation as a heuristic to merge states. Two
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experiments were set up: executing nice with n 2-byte symbolic arguments, and with

2 n-byte arguments. In both case, there are 2n bytes of symbolic search space, and

when n = 2 the two experiments are the same. With n larger than 2, the second

experiment (2 longer arguments) times out, failing to explore every path through the

program in one hour. The running times for the experiment with n 2-byte arguments

can be seen in Figure 22.
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Figure 22. Running Time to Execute nice with 2-byte Arguments.

Regardless of the merging strategy, the running time grows roughly exponentially

with the size of the input space, until eventually timing out for each configuration.

The QCE strategy alone shows the slowest growth, and is the only strategy to improve

upon the baseline search (random state selection without merging) in any of the cases.

Since any configuration with arguments that are more than two bytes fails to

complete in an hour, one way to compare them is by estimating the number of distinct

paths that have been explored thus far. Figure 23 shows the number of paths executed

in one hour for several different input sizes and merging strategies. Note that the y-
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axis is logarithmic.
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Figure 23. Paths Explored in 60 Minutes.

As the size of the symbolic input space increases, the number of paths explored

in one hour does not increase exponentially, because the amount of computational

effort that must be expended to explore a path does not decrease. The fact that fewer

paths are explored with smaller inputs is likely explained by the fact that symbolic

execution reaches deeper in the control flow graph, so that the complexity of each

execution state increases. When the symbolic arguments are 8 or 12 bytes long, the

only merging strategy that increases the number of paths explored over the baseline

configuration is a combination of QCE and constraint hashing.
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